Computational Complexity in Analysis

SoSe 2015, Exercise Sheet #2

EXERCISE 3:

Consider the set \mathcal{NP}_1 of languages of the form

$$\{1^n : \exists \vec{w} \in \{0,1\}^{p(n)} : (1^n \, 0 \, \vec{w}) \in V\}, \qquad V \in \mathcal{P}, \quad p \in \mathbb{N}[N] \ .$$

- a) Prove $\mathcal{P}_1 = \mathcal{NP}_1 \Rightarrow \mathsf{EXP} = \mathsf{NEXP}$.
- b) How about the converse?
- *) Can \mathcal{NP}_1 contain \mathcal{NP} -complete languages? Prove or disprove!

EXERCISE 4:

- a) Prove that sum, product, and reciproke of polynomial-time computable real numbers are again polynomial-time computable.
- b) Prove that every algebraic real is computable in polynomial time.
 More generally (why?) every real root of a polynomial with coefficients computable in polynomial time is again polynomial-time computable.
- c) Prove that transcendental numbers *e* and π are polynomial-time computable.