Computational Complexity in Analysis

SoSe 2015, Exercise Sheet \#2

EXERCISE 3:

Consider the set $\mathcal{N} \mathcal{P}_{1}$ of languages of the form

$$
\left\{1^{n}: \exists \vec{w} \in\{0,1\}^{p(n)}:\left(1^{n} 0 \vec{w}\right) \in V\right\}, \quad V \in \mathcal{P}, \quad p \in \mathbb{N}[N] .
$$

a) Prove $\mathcal{P}_{1}=\mathcal{N} \mathcal{P}_{1} \Rightarrow$ EXP $=$ NEXP.
b) How about the converse?
*) Can $\mathcal{N} \mathcal{P}_{1}$ contain $\mathcal{N} \mathcal{P}$-complete languages? Prove or disprove!

EXERCISE 4:

a) Prove that sum, product, and reciproke of polynomial-time computable real numbers are again polynomial-time computable.
b) Prove that every algebraic real is computable in polynomial time.

More generally (why?) every real root of a polynomial with coefficients computable in polynomial time is again polynomial-time computable.
c) Prove that transcendental numbers e and π are polynomial-time computable.

