Computational Complexity in Analysis

SoSe 2015, Exercise Sheet \#5

EXERCISE 9:

a) Prove that the function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with $\varphi(t):=\exp \left(-\frac{t^{2}}{1-t^{2}}\right)$ for $|t|<1$ and $\varphi(t): \equiv 0$ for $|t| \geq 1$ is continuous and infinitely often differentiable.
b) Prove that $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is polynomial-time computable.
c) Prove that $[0 ; 1] \ni t \mapsto \sum_{N \in \mathbb{N}} \varphi\left(2 t N^{2}-2 N\right) / N^{\ln N}$ is continuous, infinitely often differentiable, and polynomial-time computable.
d) Fix $V \subseteq \mathbb{N}$. Prove:
$f_{V}:[0 ; 1] \ni t \mapsto \sum_{N \in V} \varphi\left(2 t N^{2}-2 N\right) / N^{\ln N}$ is polynomial-time computable iff $V \in \mathcal{P}$.

EXERCISE 10:

Let $f:[0 ; 1] \rightarrow[0 ; 1]$ be polynomial-time computable.
a) Prove that there exists a polynomial-time computable function

$$
\begin{align*}
& F: \subseteq \mathbb{Z} \times \mathbb{N} \ni\left(a, 2^{n}\right) \mapsto F\left(a, 2^{n}\right) \in \mathbb{Z} \quad \text { such that } \\
& \tag{1}\\
& \left|f\left(a / 2^{n}\right)-F\left(a, 2^{n}\right) / 2^{n}\right| \leq 1 / 2^{n} \quad \text { holds whenever } \quad 0 \leq a \leq 2^{n}
\end{align*}
$$

b) Let F as in Equation (1). Prove that the following language L_{F} belongs to $\mathcal{N P}$:

$$
\left\{\left\langle 1^{m}, \operatorname{bin}(b), \operatorname{bin}(c)\right\rangle: \exists a \in \mathbb{Z}: 0 \leq a \leq c: F\left(a, 2^{m}\right) \geq b\right\}
$$

c) Conclude that $\mathcal{P}=\mathcal{N P}$ implies polynomial-time computability of the function $[0 ; 1] \ni x \mapsto$ $\max \{f(t): 0 \leq t \leq x\}$. Hint: Exploit that f has a polynomial modulus of continuity.

