## Computational Complexity in Analysis

## SoSe 2015, Exercise Sheet \#6

## EXERCISE 11:

Let $f:[0 ; 1] \rightarrow[0 ; 1]$ be polynomial-time computable and $F: \subseteq \mathbb{Z} \times \mathbb{N} \rightarrow \mathbb{Z}$ as in Exercise 10a), that is, polynomial-time computable satisfying

$$
\begin{equation*}
\left|f\left(a / 2^{n}\right)-F\left(a, 2^{n}\right) / 2^{n}\right| \leq 1 / 2^{n} \quad \text { whenever } \quad 0 \leq a \leq 2^{n} \tag{1}
\end{equation*}
$$

a) Prove that the following counting problem belongs to \#P:

$$
1^{m} 0 \operatorname{bin}(c) \mapsto \operatorname{Card}\left\{(a, b) \in \mathbb{Z}^{2}: 0 \leq a \leq c: F\left(a, 2^{m}\right) \geq b\right\}
$$

b) Conclude that $\mathrm{FP}=\# \mathrm{P}$ implies polynomial-time computability of the function $\int f:[0 ; 1] \ni$ $x \mapsto \int_{0}^{x} f(t) d t$.
c) Prove that the following counting problem belongs to $\# \mathrm{P}_{1}$ :

$$
1^{m} \mapsto \operatorname{Card}\left\{(a, b) \in \mathbb{Z}^{2}: 0 \leq a \leq 2^{m}: F\left(a, 2^{m}\right) \geq b\right\}
$$

d) Conclude that $\mathrm{FP}_{1}=\# \mathrm{P}_{1}$ implies polynomial-time computability of the real number $\int_{0}^{1} f(t) d t$.

