Martin Ziegler Holger Thies

Computational Complexity in Analysis

SoSe 2015, Exercise Sheet #6

EXERCISE 11:

Let $f : [0;1] \to [0;1]$ be polynomial-time computable and $F :\subseteq \mathbb{Z} \times \mathbb{N} \to \mathbb{Z}$ as in Exercise 10a), that is, polynomial-time computable satisfying

$$\left| f(a/2^{n}) - F(a,2^{n})/2^{n} \right| \le 1/2^{n}$$
 whenever $0 \le a \le 2^{n}$. (1)

a) Prove that the following counting problem belongs to **#P**:

$$1^m \circ \operatorname{bin}(c) \, \mapsto \, \operatorname{Card}\left\{(a,b) \in \mathbb{Z}^2 : 0 \le a \le c : \, F(a,2^m) \ge b\right\}$$

- b) Conclude that $\mathsf{FP} = \#\mathsf{P}$ implies polynomial-time computability of the function $\int f : [0;1] \ni x \mapsto \int_0^x f(t) dt$.
- c) Prove that the following counting problem belongs to $\#P_1$:

$$\mathbb{1}^m \mapsto \operatorname{Card}\left\{(a,b) \in \mathbb{Z}^2 : 0 \le a \le 2^m : F(a,2^m) \ge b\right\}$$

d) Conclude that $\mathsf{FP}_1 = \#\mathsf{P}_1$ implies polynomial-time computability of the real number $\int_0^1 f(t) dt$.