Martin Ziegler Holger Thies

Computational Complexity in Analysis

SoSe 2015, Exercise Sheet #9

The lecture has proven the following as equivalent:

i) FP = #P

- ii) For every polynomial-time computable $h: [0;1] \to \mathbb{R}$, the function $\int h: [0;1] \to \mathbb{R}$ with $x \mapsto \int_0^x h(t) dt$ is again polynomial-time computable.
- iii) For every smooth (i.e. C^{∞}) polynomial-time computable $h: [0;1] \to \mathbb{R}$ with support supp $(f) \subseteq [1/4;3/4], \int h$ is again polynomial-time computable.

Recall Poisson's partial differential equation

$$\Delta u = f \text{ in } \Omega, \quad u|_{\partial\Omega} = g \tag{1}$$

for some fixed bounded, open, and connected $\Omega \subseteq \mathbb{R}^d$ with boundary $\partial\Omega$ and given $f: \Omega \to \mathbb{R}$ and $g: \partial\Omega \to \mathbb{R}$, where $\Delta u(x_1, \ldots, x_d) = \partial_{x_1}^2 u(\vec{x}) + \partial_{x_2}^2 u(\vec{x}) + \ldots + \partial_{x_d}^2 u(\vec{x})$.

EXERCISE 15:

- a) Let $\Omega_d = \{\vec{x} : \|\vec{x}\|_2 < 1\} \subseteq \mathbb{R}^d$ and suppose $u : \Omega_d \to \mathbb{R}$ is radially symmetric, i.e., $u(\vec{x}) = v(\|\vec{x}\|)$ for some $v : [0; 1) \to \mathbb{R}$. Show that $\Delta v(r) = (r^{d-1} \cdot v')'/r^{1-d}$ for r > 0 and d = 1, 2, 3, ... Hint: Spherical coordinates.
- b) Construct a polynomial-time computable smooth $f: \Omega_d \to \mathbb{R}$ such that the solution *u* to Equation (1) is not polynomial-time computable unless FP=#P.