Martin Ziegler Holger Thies

Computational Complexity in Analysis

SoSe 2015, Exercise Sheet #11

The lecture considered encodings of real numbers, vectors, and sequences by approximations — as well as two different ways of encoding analytic functions $f : [0; 1] \rightarrow \mathbb{C}$:

i) as complex sequence $(f(a/2^m))_{\substack{a=0,\ldots,2^m-1\\m=1,2,\ldots}}$ together with an integer ℓ such that $\forall z \in \overline{\mathcal{R}}_{\ell}$:

 $|g(z)| \le 2^{\ell}$, where g denotes the unique holomorphic extension of f to $\overline{\mathbb{R}}_{\ell} := \{x + iy : |y| \le 1/\ell, -1/\ell \le x \le 1 + 1/\ell\}.$

ii) as complex sequence

$$f(0), f(1/k), f(2/k), \dots, f(1), f'(0), f'(1/k), \dots, f'(1), f''(0), f''(1/k), \dots f''(1), \dots$$

with an integer k such that the *j*-th derivative satisfies $\forall x \in [0,1] : |f^{(j)}(x)|/j! \le 2^{k+j} \cdot k^j$.

EXERCISE 17:

- a) Assert that the mapping $[-2^k; +2^k]^{\omega} \times \mathbb{N} \ni ((x_j)_j, m) \mapsto x_m$ is computable within time polynomial in n + k + m. How long does it take to compute $(f(a/2^m)_{a,m}, a, m) \mapsto f(a/2^m)$ according to i) ?
- b) Describe an algorithm that, given analytic $f : [0;1] \to \mathbb{C}$ in encoding ii) as well as $x \in [0;1]$, produces f(x). Analyze its runtime in terms of the output precision *n* and the parameter *k*.
- c) Describe an algorithm that, given analytic $f : [0;1] \to \mathbb{C}$ in encoding i) as well as $x \in [0;1]$, produces f(x). Analyze its runtime in terms of the output precision *n* and the parameter ℓ . Hint: Employ Cauchy's Differentiation Formula in order to derive a modulus of continuity.