CS422

Fall 2015, Assignment #3

PROBLEM 7:

For sets $A, B \subseteq \mathbb{N}$, their concatenation and <u>Kleene-star</u> are, respectively,

 $A \circ B := \{ \langle a, b \rangle : a \in A, b \in B \}$ and $A^* := \{ \langle a_1, a_2, \dots, a_n \rangle : n \in \mathbb{N}, a_1, \dots, a_n \in A \}$.

- a) Prove that \mathcal{P} is closed under
 - i) binary union, i.e., $A, B \in \mathcal{P} \Rightarrow A \cup B \in \mathcal{P}$
 - ii) intersection, i.e. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
 - iii) complement, i.e. $A \in \mathcal{P} \Rightarrow \mathbb{N} \setminus A \in \mathcal{P}$
 - iv) concatenation, i.e. $A, B \in \mathcal{P} \Rightarrow A \circ B \in \mathcal{P}$.
- b) Prove that PSPACE is closed underi) union, ii) intersection, iii) complement, iv) concatenation, v) Kleene-star.
- c) Prove that also NP is closed under
 i) union, ii) intersection, iii) complement, iv) concatenation, v) Kleene-star.

PROBLEM 8:

Prove these connections between decision problems $A \subseteq \mathbb{N}$ and function problems $f : \mathbb{N} \to \mathbb{N}$:

- a) If *f* can be computed in polynomial time, there exists a $k \in \mathbb{N}$ with $\ell(f(x)) \leq O(\ell(x)^k)$ for all $x \in \mathbb{N}$, where $\ell(x) = 1 + \lfloor \log_2 x \rfloor$ denotes the binary length.
- b) If f can be computed in polynomial time, then the following decision problems lies in \mathcal{P} :

Subgraph $(f) = \{ \langle x, y \rangle : x \in \mathbb{N}, y \le f(x) \}$

c) If Subgraph(f) is decidable in polynomial time and $\ell(f(x)) \leq O(\ell(x)^k)$ holds for some k and all x, then f is computable in polynomial time.

PROBLEM 9:

- a) Use the Boolean connectives \lor, \land, \neg to construct formulae $\psi(x, y, z)$ and $\chi(x, y, z)$ such that $\psi + 2\chi$ is the binary expansion of x + y + z for all $x, y, z \in \{0, 1\}$.
- b) Construct a Boolean formula $\varphi_n(\vec{x}, \vec{y}, \vec{z}, \vec{c})$ with the following property: For $\vec{x}, \vec{y}, \vec{z} \in \{0, 1\}^n$, $bin(\vec{z}) = z_0 + 2z_1 + \ldots + 2^{n-1}z_{n-1}$ is the binary expansion of the sum $bin(\vec{x}) + bin(\vec{y})$ iff there exists a $\vec{c} \in \{0, 1\}^n$ such that $\varphi_n(\vec{x}, \vec{y}, \vec{z}, \vec{c}) = 1$.