CS422

Fall 2015, Assignment \#3

PROBLEM 7:

For sets $A, B \subseteq \mathbb{N}$, their concatenation and Kleene-star are, respectively,

$$
A \circ B:=\{\langle a, b\rangle: a \in A, b \in B\} \quad \text { and } \quad A^{*}:=\left\{\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle: n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\} .
$$

a) Prove that \mathcal{P} is closed under
i) binary union, i.e., $A, B \in \mathcal{P} \Rightarrow A \cup B \in \mathcal{P}$
ii) intersection, i.e. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
iii) complement, i.e. $A \in \mathcal{P} \Rightarrow \mathbb{N} \backslash A \in \mathcal{P}$
iv) concatenation, i.e. $A, B \in \mathcal{P} \Rightarrow A \circ B \in \mathcal{P}$.
b) Prove that $\mathcal{P S P} \mathcal{A C E}$ is closed under
i) union, ii) intersection, iii) complement, iv) concatenation, v) Kleene-star.
c) Prove that also $\mathcal{N P}$ is closed under
i) union, ii) intersection, iii) complement, iv) concatenation, v) Kleene-star.

PROBLEM 8:

Prove these connections between decision problems $A \subseteq \mathbb{N}$ and function problems $f: \mathbb{N} \rightarrow \mathbb{N}$:
a) If f can be computed in polynomial time, there exists a $k \in \mathbb{N}$ with $\ell(f(x)) \leq \mathcal{O}\left(\ell(x)^{k}\right)$ for all $x \in \mathbb{N}$, where $\ell(x)=1+\left\lfloor\log _{2} x\right\rfloor$ denotes the binary length.
b) If f can be computed in polynomial time, then the following decision problems lies in \mathcal{P} :

$$
\operatorname{Subgraph}(f)=\{\langle x, y\rangle: x \in \mathbb{N}, y \leq f(x)\}
$$

c) If $\operatorname{Subgraph}(f)$ is decidable in polynomial time and $\ell(f(x)) \leq \mathcal{O}\left(\ell(x)^{k}\right)$ holds for some k and all x, then f is computable in polynomial time.

PROBLEM 9:

a) Use the Boolean connectives \vee, \wedge, \neg to construct formulae $\psi(x, y, z)$ and $\chi(x, y, z)$ such that $\psi+2 \chi$ is the binary expansion of $x+y+z$ for all $x, y, z \in\{0,1\}$.
b) Construct a Boolean formula $\varphi_{n}(\vec{x}, \vec{y}, \vec{z}, \vec{c})$ with the following property:

For $\vec{x}, \vec{y}, \vec{z} \in\{0,1\}^{n}, \operatorname{bin}(\vec{z})=z_{0}+2 z_{1}+\ldots+2^{n-1} z_{n-1}$ is the binary expansion of the sum $\operatorname{bin}(\vec{x})+\operatorname{bin}(\vec{y})$ iff there exists a $\vec{c} \in\{0,1\}^{n}$ such that $\varphi_{n}(\vec{x}, \vec{y}, \vec{z}, \vec{c})=1$.

