

CS422

291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea Tel. +82-42-350-3502~3507 Fax. +82-42-350-3510

Prof. Dr. Martin Ziegler + 82-42-350-3568 ziegler@kaist.ac.kr http://m.zie.de

In which of the following cases is the set $L \subseteq \{0,1\}^*$ semi-decidable? Please mark the correct box(es):

Fall 2015

□ If, for every $\underline{x} \in \{0,1\}^*$, there exists an algorithm \mathcal{A} that, on input of x, answers within a finite number of steps whether $\underline{x} \in L$ or not.

Quiz

- If there exists an algorithm \mathcal{A} that, for every $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers within a finite number of steps whether $\underline{x} \in L$ or not.
- □ If there exists an algorithm \mathcal{A} that, for some $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers within a finite number of steps whether $\underline{x} \in L$ or not.
- □ If there exists an algorithm \mathcal{A} that, for every $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers within a finite number of steps in case $\underline{x} \in L$ and behaves arbitrarily otherwise.
- If there exists an algorithm \mathcal{A} that, for every $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers arbitrarily in case $\underline{x} \in L$ and gives no answer otherwise.
- □ If there exists an algorithm \mathcal{B} that, for every $\underline{x} \in \{0,1\}^*$, on input of \underline{x} answers arbitrarily in case $\underline{x} \notin L$ and gives no answer otherwise.
- If there exist two algorithms \mathcal{A} and \mathcal{B} where, for every $\underline{x} \in \{0,1\}^*$, \mathcal{A} on input of \underline{x} answers iff $\underline{x} \in L$, and \mathcal{B} on input of \underline{x} answers iff $\underline{x} \notin L$.
- If there exists an algorithm \mathcal{A} that ignores its input and prints all $\underline{x} \in L$ in arbitrary order, possibly with repetition.
- If there exists an algorithm \mathcal{A} that ignores its input and prints all $\underline{x} \in L$ in lexicographical order without repetition.
- □ If there exists an algorithm \mathcal{A} that ignores its input and prints infinitely many <u>x</u>∈L without repetition.
- If the set L is finite.
- If the set *L* has finite complement $L^{C} = \{0,1\}^* \setminus L$.