CS422

Fall 2015, Assignment #2

SOLUTION 4:

b) $L := \{ \langle A \rangle : \exists \vec{x} : A \text{ does not terminate on } \vec{x} \}.$ The hypothesis that some algorithm \mathcal{B} semi-decides *L* implies

 \mathcal{B} on $\langle \mathcal{B} \rangle$ terminates $\Leftrightarrow \exists \vec{x} : \mathcal{B}$ on \vec{x} does not terminate

which by itself does not lead to a contradiction!

SOLUTION 5:

- a) The mapping $\langle \mathcal{A} \rangle \mapsto \langle \mathcal{A}, "stop" \rangle$ is a computable reduction.
- b) The mapping $\langle \mathcal{A} \rangle \mapsto \langle \mathcal{A}' \rangle$ is a computable reduction, where we design \mathcal{A}' such that
 - on the empty input it stops right away;
 - on inputs $0\vec{x}$ and $1\vec{x}$ it simulates \mathcal{A} on input \vec{x} :

For $\langle \mathcal{A} \rangle \in T$, \mathcal{A}' terminates on both the empty and every non-empty input, hence $\langle \mathcal{A}' \rangle \in X$. For $\langle \mathcal{A} \rangle \notin T$, there exists some input \vec{x} which \mathcal{A} does not terminate on; hence \mathcal{A}' terminates on the empty input but not on $0\vec{x}$; thus showing $\langle \mathcal{A}' \rangle \notin X$.

- c) The mapping $\langle \mathcal{A} \rangle \mapsto \langle \mathcal{A}'' \rangle$ is a computable reduction, where we design \mathcal{A}'' such that
 - i) on input $\langle \vec{x}, \vec{y}, N \rangle$
 - ii) simulate A on input \vec{x} for N steps:
 - iii) stop if A on input \vec{x} does *not* terminate within N steps;
 - iv) otherwise proceed to simulate A on input \vec{y} for indefinitely many steps.
 - If A terminates for every input y
 (and hence ⟨A⟩ ∈ X), then A" terminates for every input ⟨x
 ,y
 N⟩ either in (iii) or in (iv).
 - If A terminates for no input x (and hence ⟨A⟩ ∈ X), then A" terminates for every input ⟨x,y,N⟩ in (iii).
 - If ⟨A⟩ ∉ X, then there exists some input x on which it does terminate (say, after N steps) and some input y on which it does not terminate.
 Then ⟨x, y, N⟩ constitutes an input which A" does not terminate on: ⟨A"⟩ ∉ T.