Motivation: Matching KAIST students with labs automatically (algorithm!) to find stable solution.

Output: 1-1 pairing w/out unstable tuples
Def: Tuple (S, P) is unstable if S prefers P over assigned P^{\prime} and P prefers S over assigned $S^{\prime \prime}$ student's order of preferred labs b) each lab's order of preferred students

Stable Matching

Does it always exist? No!

Reminder: A perfect matching in a graph $G=(V, E)$ of $|V|=2 n$ vertices is a subset M of n edges without common vertices.

(b)

Specification:

Input: n 'men' and n 'women', each with a ranking of preference among the opposite 'gender'.

Output: stable perfect matching
Def: Tuple (w, m) is unstable if w prefers m over assigned m^{\prime} and m prefers w over assigned w^{\prime}

Gale-Shapley (1962)
M := \{\}
WHILE some m is unmatched
Let m propose to $w:=$ first on m 's list that m has not yet proposed to.
IF w is unmatched, add (m, w) to M
ELIF w prefers m to current partner m^{\prime} replace (m^{\prime}, w) in M with (m, w)
ELSE w rejects proposal from m.
ENDWHILE // output: M

Specification:

Input: n 'men' and n 'women', each with a ranking of preference among the opposite 'gender'.

Output: 'matching' w/out unstable tuples
Def: Tuple (w, m) is unstable if w prefers m over assigned m^{\prime} and m prefers w over assigned w^{\prime}

Proof of Correctness

Observation A: Once a woman is matched, she never becomes unmatched but only "trades up".

Claim 1: The loop terminates after $\leq n^{2}$ iterations.

Claim 2:

All get matched.
Claim 3: Matching w/o unstable pairs.

Def: Tuple (w, m) is unstable if w prefers m over assigned m^{\prime} and m prefers w over assigned w^{\prime}

Efficiency: implement in $O\left(n^{2}\right)$

Represent men by numbers $1 \ldots n$; same for women.
Input: n-element arrays with order of preference for each $m, w=1 \ldots n$ Output: matching, represented by two n-element arrays wife $[m]=w$ and husband $[w]=m$;

WHILE some m is unmatched
Let m propose to $w:=$ first on m 's list that m has not yet proposed to.
IF w is unmatched, add (m, w) to M
ELIF w prefers m to current partner m^{\prime} replace (m^{\prime}, w) in M with (m, w)
ELSE w rejects proposal from m.
ENDWHILE // output: M
$=0$ if unmatched. For each man m, lastwproposed $[m]$ For each woman w, inverted order of preference.
Is this running time optimal?

Understanding the Solution

Represent men by numbers $1 . . . n$; same for women.
Input: n-element arrays with order of preference for each $m, w=1 \ldots n$
Example [two stable matchings]

	1st	2nd	3rd
Abed	Annie	Britta	Frankie
Ben	Britta	Annie	Frankie
Craig	Annie	Britta	Frankie

	1st	2nd	3rd
Annie	Ben	Abed	Craig
Britta	Abed	Ben	Craig
Frankie	Abed	Ben	Craig

\{ (Abed,Annie), (Ben,Britta), (Craig,Frankie) \}
\{ (Abed, Britta) , (Ben,Annie) , (Craig,Frankie) \}
Gale-Shapley produces that stable matching why? where every m gets assigned his most preferred choice among all w matched to him in any stable matching; whereas w gets assigned her least preferred choice.

