§2 Recap: AVL Trees

KAIST

Adelson-Velsky & Landis 1962: $h \leq O(\log n)$ Heights of any two sibling subtrees must differ by
at most one!ToToT1T2T3T4Image: Comparison of the second secon

1, 2, 4, 7, 12, 20, ... ?

Min. #nodes of AVL Tree of height *h*: # $T(0)+1 = F_3$, # $T(h+1)+1 = #T(h)+1 + #T(h-1)+1 = F_{h+4}$ with Fibonacci no.s $F_h = (\Phi^h - (-1/\Phi)^h)/\sqrt{5} \ge \Omega(1.6^h)$ by induction as $\Phi := (1+\sqrt{5})/2 \approx 1.618$ has $\Phi^2 = \Phi + 1$.

AVL Tree Maintenance

Binomial Trees [CLR,§20]

CS500 M. Ziegler

A *binomial tree* is an ordered tree defined recursively: $B_k + B_k \rightarrow B_{k+1}$ Merge 0 [Figure 20.2 in CLR] Require B_{k-1} and maintain B_0 B_k depth each *B* to be heap-ordered: $key(node) \leq$ key(children) Bo BA **Lemma 20.1:** *B*_{*k*} has $n=2^k$ nodes and height k and maximum degree k. \widetilde{B}_0 Precisely nodes B_{k-2} B_{k-1} depth d. are at B

Binomial Heaps [CLR,§20]

KAIST CS500 M. Ziegler

A binomial tree is an ordered tree defined recursively. Binomial heap is ascend. list of binomial trees Merge containing, for each k, at most one B_k . $9 \xrightarrow{5} B_2 \xrightarrow{12} B_3$ $17 \xrightarrow{5} 23 \xrightarrow{15} 77$ $12 \xrightarrow{5} 77$ $17 \xrightarrow{5} 23 \xrightarrow{15} 77$ $12 \xrightarrow{5} 77$ $12 \xrightarrow{5} 8_3$ $17 \xrightarrow{5} 23 \xrightarrow{15} 77$ $12 \xrightarrow{5} 8_3$ $17 \xrightarrow{5} 23 \xrightarrow{5} 77$ $12 \xrightarrow{5} 8_3$ $17 \xrightarrow{5} 23 \xrightarrow{5} 77$ $12 \xrightarrow{5} 8_3$ $17 \xrightarrow{5} 23 \xrightarrow{5} 77$

Binomial

elements

Lemma 20.1: B_k has $n=2^k$ nodes and height k and maximum degree k.

Pointers to: children, parent, right sibbling, next bin. tree

Example:

heap of 13

List len.+deg. $\leq O(\log n)$

Operations on Binomial Heaps

Binomial heap is ascend. list of binomial trees A containing, for each k, at most one B_k . Require

 B'_3

B["]₁₂

1+2+4+16

+ 1+2 +8+16

2

 B''_{01}

 B'_0

B''₂

 $+16+32\sqrt{}$

and maintain each *B* to be *heap-ordered*: key(node) ≤

 B_{k-1}

 $\overline{B_{k-1}}$

Ď,

key(children)

 $\frac{\text{Merging two}}{\text{Binomial}} \\ \frac{\text{Heaps in}}{O(\log n)} \checkmark$

List len.+deg. $\leq O(\log n)$

 B'_4