§2 Recap: AVL Trees

Adelson-ㅡㅡelsky \& Landis 1962: $\quad h \leq \mathrm{O}(\log n)$ Heights of any two sibling subtrees must differ by at most one! $\mathrm{T}_{0} \quad \mathrm{~T}_{1} \quad \mathrm{~T} 2 \quad \mathrm{~T} 3$

$$
1,2,4,7,12,20, \ldots ?
$$

 T4

Min. \#nodes of AVL Tree of height h :
$\# T(0)+1=F_{3}, \# T(h+1)+1=\# T(h)+1+\# T(h-1)+1=F_{h+4}$ with Fibonacci no.s $F_{h}=\left(\Phi^{h}-(-1 / \Phi)^{h}\right) / \sqrt{ } 5 \geq \Omega\left(1.6^{h}\right)$ by induction as $\Phi:=(1+\sqrt{ } 5) / 2 \approx 1.618$ has $\Phi^{2}=\Phi+1$.

AVL Tree Maintenance

Adelson-V_elsky \& Landis 1962: $\quad h \leq \mathrm{O}(\log n)$ Heights of any two sibling subtrees must differ by at most one!

Store and recursively update balance indicators +0 , during insert, three cases:
search $O(\log n)$ insert $O(\log n)$ delete $O(\log n)$
merge $O(n)$

Binomial Trees [CLR,§20]

A binomial tree is an ordered tree defined recursively:

B_{k}
[Figure 20.2 in CLR]

Lemma 20.1: B_{k} has $n=2^{k}$ nodes and height k and maximum degree k. Precisely $\binom{k}{d}$ nodes are at depth d.

Binomial Heaps [CLR,§20]

KAIST CS500 M. Ziegler

A binomial tree is an ordered tree defined recursively. Binomial heap is ascend. list of binomial trees Merge containing, for each k, at most one B_{k}.

Example: heap of 13

(53)

Require
and maintain each B to be heap-ordered: key(node) \leq key(children) Lemma 20.1: B_{k} has $n=2^{k}$ nodes and height k Binomial elements and maximum degree k.

Pointers to: children, parent, right sibbling, next bin. tree

Operations on Binomial Heaps

A binomial tree is an ordered tree defined recursively. Binomial heap is ascend. list of binomial trees Merge containing, for each k, at most one B_{k}. Operations: H° Q $\overparen{\square} B_{k} \longrightarrow$

1. Create one-elem. bin.heap: $O(1) \sqrt{ }$
2. Extract the minimum key: $O(\log n) \sqrt{ }$
3. Merge two binom. heaps: $O(\log n)$

Require
and maintain
each B to be
heap-ordered:
key(node) \leq
key(children)
4. Insert element: $O(\log n) \sqrt{ }$
5. Decrease key: $O(\log n) \sqrt{ } \quad H^{\prime}$ 6. Delete key: $O(\log n) \quad \sqrt{ }$ Pointers to: children, parent, right sibbling, next bin. tree

List len.+deg. $\leq \mathrm{O}(\log n)$

Merging two Binomial Heaps

KAIST

 CS500 M. Ziegler- Merging two Binomial Trees B_{k} : $\mathrm{O}(1)$

Binomial heap is ascend. list of binomial trees

containing, for each k, at most one B_{k}.

$1+2+4+16$
$+1+2+8+16$
$=2+16+32 \sqrt{ }$

Require
and maintain each B to be heap-ordered: key(node) \leq key(children)

Merging two
Binomial Heaps in
$\underline{\mathrm{O}(\log n)} \sqrt{ }$
List len. + deg. $\leq \mathrm{O}(\log n)$

