Motivating example: Repeated binary increment, \#bit flips when counting to $n$ ?
(+decrement?)

## Definition (amortized cost):

Let $\mathcal{A}$. Method $_{1}, \ldots, \mathcal{A}$. Method $_{k}$ denote an implementation of an abstract data type.
Let $T(n)$ denote the worst-case cost of any
sequence of $n$ calls of $\mathcal{A}$ 's methods.
Then amortized cost of $\mathcal{A}$ is $T(n) / n$.
Don't confuse:

Potential method of analysis: • average-case cost Let $c_{j}$ denote cost of $j$-th operation,

- expected cost $\Phi_{j}:=\# 1 \mathrm{~s}$ in counter after $j$-th op. $\Leftrightarrow$ before ( $j+1$ )-st op. $\Rightarrow c_{j}+\Phi_{j}-\Phi_{j-1} \leq 2, \quad \Phi_{0}=0, \Phi_{j} \geq 0 \quad \sum_{1 \leq j \leq n} c_{j} / n \leq 2-\Phi_{n} / n$


## §3 Relaxed Binomial Trees


"Mark" indicates $j$-th child having order $=j-2$

A relaxed Binomial Tree of order $k \geq 1$ consists of a root with $k$ children, the $j^{\text {th }}$ being a relaxed binom.tree of order $\geq j-2$

Lemma: A relaxed binomial tree of order $k$ has $\geq F_{k+2} \geq \Omega\left(1.6^{k}\right)$ nodes

> Merge

Prune
$\sum_{j>0} j \cdot 2^{-j}=2: \quad \sum_{j>0} j \cdot q^{j}=q \cdot \partial_{q} \sum_{j \geq 0} q^{j}=q \cdot \partial_{q} 1 /(1-q)=q /(1-q)^{2}$
$\varphi:=(1+\sqrt{ } 5) / 2 \approx 1.618$
$1+F_{1}+F_{2}+\ldots+F_{k}=F_{k+2} \geq \varphi^{k}$
Fibonacci no.s $F_{k}$


A relaxed Binomial Tree of order $k \geq 1$ consists of a root with $k$ children, the $j^{\text {th }}$ being a relaxed binom.tree of order $\geq j-2$

Lemma: A relaxed binomial tree of $n$ nodes has order $\leq O(\log n)$
Extract min.key: $O(\log n)$ Decrease key:
Merge two Fib.heaps: $O(1)$
amortized cost

Insert element:
$O(1)$
Create 1-elem.Fib.heap: $O(1)$

## §3 Extract Minimum



A Fibonacci Heap $H$ is a list of $t$ heapordered relaxed binomial trees with pointer to the min.

A relaxed Binomial Tree of order $k \geq 1$ consists of a root with $k$ children, the $j^{\text {th }}$ being a relaxed binom.tree of order $\geq j-2$

Lemma: A relaxed binomial tree of $n$ nodes has order $\leq O(\log n)$
Extract min.key: $O(\log n)$

- Delete target of min.ptr cost
- Merge two Fibonacci heaps.
- Consolidate s.t. each tree order occurs only once!
$c_{j}+\Phi_{j}-\Phi_{j-1} \leq O(\log n), \quad \Phi_{0}=0, \Phi_{j} \geq 0$ Potential $\Phi=O(t)$

A Fibonacci Heap $H$ is a list of $t$ heapordered relaxed binomial trees with pointer to the min.


A relaxed Binomial Tree of order $k \geq 1$ consists of a root with $k$ children, the $j^{\text {th }}$ being a relaxed binom.tree of order $\geq j-2$

Lemma: A relaxed binomial tree of $n$ nodes has order $\leq O(\log n)$
Decrease key: $O(1)$

- cut subtree
- mark parent
- if already marked: reset, cut \& cascade

Potential
$c_{j}+\Phi_{j}-\Phi_{j-1} \leq O(1)$,
$\Phi_{0}=0, \Phi_{j} \geq 0$
$\Phi=O(t+2 m)$

## §3 Cuts, Marks, and Cascading <br> KAIST <br> CS500 M. Ziegler


(decrease key of $x$ from 42 to 21 )


Decrease key: $O(1)$

- cut subtree
- mark parent

(19)---- (30)
(19) $x$
- if already marked: reset, cut \& cascade

Potential
$c_{j}+\Phi_{j}-\Phi_{j-1} \leq O(1)$,
$\Phi_{0}=0, \Phi_{j} \geq 0$
$\Phi=O(t+2 m)$

