Martin Ziegler
Sewon Park, GyuHyeon Choi, Junsung Lim, Won-young Lee

Issued on May 03, 2016
Solutions due: May 10, 2016

CS500

Spring 2016, Assignment \#3

Recall that a Boolean term Φ in 4-conjunctive normal form (4CNF) looks like this:

$$
\begin{equation*}
\left(\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{4}\right) \wedge\left(\ell_{5} \vee \ell_{6} \vee \ell_{7} \vee \ell_{8}\right) \wedge \ldots \wedge\left(\ell_{4 m-3} \vee \ell_{4 m-2} \vee \ell_{4 m-1} \vee \ell_{4 m}\right) \tag{1}
\end{equation*}
$$

where each ℓ_{j} is a literal, that is, some variable x_{i} or its negation $\neg x_{i}$.

PROBLEM 10 ($7+3 \mathrm{P}$) :
Establish that Φ from Equation (1) in variables x_{1}, \ldots, x_{n} admits a satisfying assignment iff the following $\widetilde{\Phi}$ in 3 CNF and variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ does:

$$
\begin{aligned}
\widetilde{\Phi}=\left(\ell_{1} \vee \ell_{2} \vee y_{1}\right) \wedge\left(\neg y_{1} \vee \ell_{3} \vee \ell_{4}\right) & \wedge\left(\ell_{5} \vee \ell_{6} \vee y_{2}\right) \wedge\left(\neg y_{2} \vee \ell_{7} \vee \ell_{8}\right) \wedge \\
& \wedge \ldots \wedge\left(\ell_{4 m-3} \vee \ell_{4 m-2} \vee y_{m}\right) \wedge\left(\neg y_{m} \vee \ell_{4 m-1} \vee \ell_{4 m}\right)
\end{aligned}
$$

Argue that (an encoding of) $\widetilde{\Phi}$ can be computed from (an encoding of) Φ in time polynomial in the length of the input.

PROBLEM 11 ($2+6+2 \mathrm{P}$):
Fix a term $\widetilde{\Phi}$ in 3 CNF with m clauses $\left(\ell_{3 j-2} \vee \ell_{3 j-1} \vee \ell_{3 j}\right)$ in variables x_{1}, \ldots, x_{n}. Now consider the graph $G_{\widetilde{\Phi}}$ consisting of vertex set V and undirected edges E, where
$V=\{(j, 1),(j, 2),(j, 3): 1 \leq j \leq m\}, \quad E \quad=\quad\left\{\{(j, s),(i, t)\}: j=i \vee \ell_{3 j+1-s}=\neg \ell_{3 i+1-t}\right\}$
a) Draw the graph $G_{\tilde{\Phi}}$ corresponding to

$$
\widetilde{\Phi}=\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)
$$

b) Establish for every $3 \mathrm{CNF} \widetilde{\Phi}$ that $\widetilde{\Phi}$ admits a satisfying assignment iff $G_{\widetilde{\Phi}}$ contains $\geq m$ pairwise non-adjacent vertices.
c) Argue that (an encoding of) $G_{\widetilde{\Phi}}$ can be computed from (an encoding of) $\widetilde{\Phi}$ in time polynomial in the length of the input.

