Martin Ziegler Sewon Park, GyuHyeon Choi, Junsung Lim, Won-young Lee Issued on May 03, 2016 Solutions due: May 10, 2016

CS500

Spring 2016, Assignment #3

Recall that a Boolean term Φ in 4-conjunctive normal form (4CNF) looks like this:

$$(\ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4) \land (\ell_5 \vee \ell_6 \vee \ell_7 \vee \ell_8) \land \dots \land (\ell_{4m-3} \vee \ell_{4m-2} \vee \ell_{4m-1} \vee \ell_{4m}) , \qquad (1)$$

where each ℓ_i is a *literal*, that is, some variable x_i or its negation $\neg x_i$.

PROBLEM 10 (7+3P) :

Establish that Φ from Equation (1) in variables x_1, \ldots, x_n admits a satisfying assignment iff the following $\widetilde{\Phi}$ in 3CNF and variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ does:

$$\widetilde{\Phi} = (\ell_1 \lor \ell_2 \lor y_1) \land (\neg y_1 \lor \ell_3 \lor \ell_4) \land (\ell_5 \lor \ell_6 \lor y_2) \land (\neg y_2 \lor \ell_7 \lor \ell_8) \land \\ \land \dots \land (\ell_{4m-3} \lor \ell_{4m-2} \lor y_m) \land (\neg y_m \lor \ell_{4m-1} \lor \ell_{4m})$$

Argue that (an encoding of) $\tilde{\Phi}$ can be computed from (an encoding of) Φ in time polynomial in the length of the input.

PROBLEM 11 (2+6+2P):

Fix a term $\widetilde{\Phi}$ in 3CNF with *m* clauses $(\ell_{3j-2} \lor \ell_{3j-1} \lor \ell_{3j})$ in variables x_1, \ldots, x_n . Now consider the graph $G_{\widetilde{\Phi}}$ consisting of vertex set *V* and undirected edges *E*, where

$$V = \{(j,1), (j,2), (j,3) : 1 \le j \le m\}, \quad E = \{\{(j,s), (i,t)\} : j = i \lor \ell_{3j+1-s} = \neg \ell_{3i+1-t}\}$$

a) Draw the graph $G_{\widetilde{\Phi}}$ corresponding to

$$\widetilde{\Phi} = (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$$

- b) Establish for every 3CNF $\tilde{\Phi}$ that $\tilde{\Phi}$ admits a satisfying assignment iff $G_{\tilde{\Phi}}$ contains $\geq m$ pairwise non-adjacent vertices.
- c) Argue that (an encoding of) $G_{\widetilde{\Phi}}$ can be computed from (an encoding of) $\widetilde{\Phi}$ in time polynomial in the length of the input.