Martin Ziegler Sewon Park, GyuHyeon Choi, Junsung Lim, Won-young Lee

CS500

Spring 2016, Assignment #4

PROBLEM 12 (6+4P) :

a) Which of the following structures satisfy the first-order formula	" $\forall x \exists y. x + y = 0$ ", and why not?
--	--

i) $(\mathbb{N},+,0)$	vii)	$\left(\mathbb{Q}\setminus\{0\},\cdot,1 ight)$
ii) $(\mathbb{Z}, +, 0)$	viii)	$\left(\mathbb{C}\setminus\{0\},\cdot,1 ight)$
iii) $(\{0,1\}^d, XOR, (0, \dots 0))$	ix)	$\left(\mathbb{R}^3\setminus\{0\}, imes,(1,1,1) ight)$
iv) $(\mathbb{Z}, \cdot, 0)$	x)	$\left(\mathbb{Q}^{2 imes 2}ackslash \{0\},\cdot,inom{1}{0}{0} ight) ight)$
v) $(\mathbb{Z}, \cdot, 1)$	xi)	$\left(\left\{\binom{a\ b}{c\ d}:a,b,c,d\in\mathbb{Q},ad\neq bc\right\},\ \cdot\ ,\binom{1\ 0}{0\ 1}\right)$
vi) $(\mathbb{Q}, \cdot, 1)$	xii)	$({f: X \to X \text{ injective}}, \circ, \text{id}), \text{ for which sets } X ?$

b) Consider a Boolean term $\varphi \equiv C_1 \wedge C_2 \wedge \cdots \wedge C_m$ in CNF over variables x_1, \ldots, x_n . Encode it as the logical structure (U, V, N, P) with

- universe $U = \{0, 1, \dots, n + m 1\}$ (representing variables and clauses),
- unary relation $V = \{0, 1, \dots, n-1\}$ (representing variables),
- binary relation $N = \{(v, c) : \text{variable } v \text{ occurs negated in clause } c\}$, and
- binary relation $P = \{(v, c) : \text{variable } v \text{ occurs unnegated in clause } c\}$.

Moreover consider a subset $T \subseteq U$ as an assignment of value true to variables $V \cap T$ and value false to variables $V \setminus T$. Now construct a first-order formula $\Phi(T, V, N, P)$ expressing whether T constitutes a satisfying assignment to φ .

PROBLEM 13 (6+4P) :

a) Calculate the Tutte Matrix and Tutte Determinant of the following graphs (i), (ii), and (iii):

b) Estimate the asymptotic number of terms in expanded form of the *n*-variate polynomial $\prod_{i=1}^{n} (X_i + 1)$.

PROBLEM 14 (4+4+2P):

- a) Suppose \mathcal{A} is a randomized algorithm solving the decision problem L in time t(n) with one-sided error 1ε independent of n: On inputs $\vec{x} \notin L$, \mathcal{A} always correctly reports false; but on inputs $\vec{x} \in L$, \mathcal{A} might also report false with probability 1ε . Design and analyze an algorithm \mathcal{A}' that, by repeating \mathcal{A} an appropriate (which?) number of times, errs only with probability $2^{-100 \cdot n}$.
- b) Now suppose randomized \mathcal{B} makes two-sided errors: reporting false on inputs $\vec{x} \in L$ with probability $\leq 1/2 \varepsilon$ and true on inputs $\vec{x} \notin L$ with probability $\leq 1/2 \varepsilon$ for some fixed $\varepsilon > 0$. Design and analyze an algorithm \mathcal{B}' that repeatedly invokes \mathcal{B} to err with probability $\leq 2^{-100 \cdot n}$.
- c) Search, select, study, and summarize two publications on causes and rates of so-called *soft errors*.