CS500

Spring 2016, Assignment \#4
PROBLEM 12 (6+4P) :
a) Which of the following structures satisfy the first-order formula " $\forall x \exists y . x+y=0$ ", and why not?
i) $(\mathbb{N},+, 0)$
vii) $(\mathbb{Q} \backslash\{0\}, \cdot, 1)$
ii) $(\mathbb{Z},+, 0)$
viii) $(\mathbb{C} \backslash\{0\}, \cdot, 1)$
iii) $\left(\{0,1\}^{d}, \mathrm{XOR},(0, \ldots 0)\right)$
ix) $\left(\mathbb{R}^{3} \backslash\{0\}, \times,(1,1,1)\right)$
iv) $(\mathbb{Z}, \cdot, 0)$
x) $\left(\mathbb{Q}^{2 \times 2} \backslash\{0\}, \cdot,\left(\begin{array}{l}1 \\ 0 \\ 0\end{array} 1\right)\right)$
v) $(\mathbb{Z}, \cdot, 1)$
xi) $\left.\left(\left\{\begin{array}{c}a b \\ c \\ c\end{array}\right): a, b, c, d \in \mathbb{Q}, a d \neq b c\right\}, \cdot,\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$
vi) $(\mathbb{Q}, \cdot, 1)$
xii) $(\{f: X \rightarrow X$ injective $\}, \circ$, id $)$, for which sets X ?
b) Consider a Boolean term $\varphi \equiv C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ in CNF over variables x_{1}, \ldots, x_{n}.

Encode it as the logical structure (U, V, N, P) with

- universe $U=\{0,1, \ldots, n+m-1\}$ (representing variables and clauses),
- unary relation $V=\{0,1, \ldots, n-1\}$ (representing variables),
- binary relation $N=\{(v, c)$: variable v occurs negated in clause $c\}$, and
- binary relation $P=\{(v, c)$: variable v occurs unnegated in clause $c\}$.

Moreover consider a subset $T \subseteq U$ as an assignment of value true to variables $V \cap T$ and value false to variables $V \backslash T$. Now construct a first-order formula $\Phi(T, V, N, P)$ expressing whether T constitutes a satisfying assignment to φ.

PROBLEM 13 (6+4P) :

a) Calculate the Tutte Matrix and Tutte Determinant of the following graphs (i), (ii), and (iii):

b) Estimate the asymptotic number of terms in expanded form of the n-variate polynomial $\prod_{j=1}^{n}\left(X_{j}+1\right)$.

PROBLEM 14 (4+4+2P):

a) Suppose \mathcal{A} is a randomized algorithm solving the decision problem L in time $t(n)$ with one-sided error $1-\varepsilon$ independent of n : On inputs $\vec{x} \notin L, \mathcal{A}$ always correctly reports false; but on inputs $\vec{x} \in L, \mathcal{A}$ might also report false with probability $1-\varepsilon$. Design and analyze an algorithm \mathcal{A}^{\prime} that, by repeating \mathcal{A} an appropriate (which?) number of times, errs only with probability $2^{-100 \cdot n}$.
b) Now suppose randomized \mathcal{B} makes two-sided errors: reporting f alse on inputs $\vec{x} \in L$ with probability $\leq 1 / 2-\varepsilon$ and true on inputs $\vec{x} \notin L$ with probability $\leq 1 / 2-\varepsilon$ for some fixed $\varepsilon>0$. Design and analyze an algorithm \mathcal{B}^{\prime} that repeatedly invokes \mathcal{B} to err with probability $\leq 2^{-100 \cdot n}$.
c) Search, select, study, and summarize two publications on causes and rates of so-called soft errors.

