CS700

Fall 2016, Assignment #1

PROBLEM 1 (2+2+3+3):

Recall that decision problem $X \subseteq \{0,1\}^*$ is called *reducible* to $Y \subseteq \{0,1\}^*$ (written $X \preccurlyeq Y$) if there exists a total computable function $f : \{0,1\}^* \rightarrow \{0,1\}^*$ such that, for all $\vec{x} \in \{0,1\}^*$, it holds: $\vec{x} \in X \Leftrightarrow f(\vec{x}) \in Y$.

- a) Prove $T \preccurlyeq E$.
- b) Prove $E \preccurlyeq T$.
- c) Prove $\overline{T} \preccurlyeq H^H$.
- d) Prove $H^H \preccurlyeq \overline{T}$.

Here we recall the Totality problem T and consider the following problems:

- *E*) Given two (finite binary strings encoding) Turing machines/algorithms \mathcal{A} and \mathcal{B} , are they equivalent in the sense that, for every $\vec{x} \in \{0, 1\}^*$, \mathcal{A} on input \vec{x} eventually terminates iff \mathcal{B} on input \vec{x} does (although not necessarily after the same number of steps)?
- T) Given a Turing machine/algorithm \mathcal{A} , does it terminate on *all* possible inputs \vec{x} ?
- H^H) Given a Turing machine/algorithm \mathcal{A}^H with oracle access to the Halting problem H and input \vec{x} , does it terminate?

Solution to d): $\langle \mathcal{A}^H \rangle \mapsto \langle \mathcal{B}_A \rangle$, where $\mathcal{B}_A(t)$

- simulates $\mathcal{A}^{?}$ and aborts if does not stop within $\leq t$ steps
- answering (correctly) positive any query " $q \in H$?" made by \mathcal{A} that succeeds when semi-deciding it for up to *t* steps
- while otherwise answering it (possibly incorrectly) to the negative.
- If successful up to here (i.e. A's simulation has stopped), keep simultaneously semi-deciding those queries "q ∈ H?" answered negatively.