CS700

Fall 2016, Assignment \#2

PROBLEM 2 ($1+2+3+1+3$ P):
a) Let $f: \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a computable partial function and $\left(r_{j}\right) \subseteq \operatorname{dom}(f)$ a computable sequence. Prove that the sequence $f\left(r_{j}\right)$ is again computable.
b) Let $\left(s_{j}\right) \subseteq \mathbb{R} \backslash\{0\}$ be a computable sequence.

Prove that the sequence $\operatorname{sign}\left(s_{j}\right) \in\{-1,+1\}$ is computable.
c) Let $f:[0 ; 1] \rightarrow[-1 ; 1]$ be a computable function with $f(0)<0<f(1)$. Prove that f has a computable root.
Hint: In case f has no dyadic rational root, apply (a) and (b) to the sequence $\left(r_{j}\right)$ of dyadic rationals in $[0 ; 1]$.
d) Let $g:[0 ; 1] \rightarrow[0 ; 1]$ be a computable function.

Prove that it has a computable fixed point, that is, some $x \in[0 ; 1]$ with $g(x)=x$.
e) Suppose compact $K \subseteq \mathbb{R}^{d}$ has non-empty interior and let $h: K \rightarrow K$ be a (componentwise) computable function which is c-Lipschitz for some $c<1$. Prove that h has a (componentwise) computable fixed point.

