CS700

Fall 2016, Assignment #2

PROBLEM 2 (1+2+3+1+3P):

- a) Let $f :\subseteq \mathbb{R} \to \mathbb{R}$ be a computable partial function and $(r_j) \subseteq \text{dom}(f)$ a computable sequence. Prove that the sequence $f(r_j)$ is again computable.
- b) Let $(s_j) \subseteq \mathbb{R} \setminus \{0\}$ be a computable sequence. Prove that the sequence $sign(s_j) \in \{-1, +1\}$ is computable.
- c) Let f: [0;1] → [-1;1] be a computable function with f(0) < 0 < f(1). Prove that f has a computable root.
 Hint: In case f has no dyadic rational root, apply (a) and (b) to the sequence (r_j) of dyadic rationals in [0;1].
- d) Let $g: [0;1] \rightarrow [0;1]$ be a computable function. Prove that it has a computable fixed point, that is, some $x \in [0;1]$ with g(x) = x.
- e) Suppose compact $K \subseteq \mathbb{R}^d$ has non-empty interior and let $h : K \to K$ be a (componentwise) computable function which is *c*-Lipschitz for some c < 1. Prove that *h* has a (componentwise) computable fixed point.