Martin Ziegler Jiwon Park Issued on Nov.10, 2016 Solutions due: Nov.21, 2016

CS700

Fall 2016, Assignment #3

PROBLEM 3 (1+1+2+1+1+1P):

Abbreviate $|\vec{x}| := n$ for $\vec{x} \in \{0, 1\}^n$ and $(x_1, \dots, x_n)_j := x_j$; also consider integers encoded in binary.

a) Prove that the following problem is in \mathcal{NP} for every $V \in \mathcal{P}$:

$$V' := \left\{ x \in \mathbb{N} \mid \exists y \in \mathbb{N} : y \le x \land (x, y) \in V \right\}$$

- b) Prove that there exists some $V \in \mathcal{P}$ such that V' is \mathcal{NP} -hard.
- c) Prove that a function $f : \{0, 1\}^* \to \{0, 1\}^*$ is computable in polynomial time iff it holds (i) $|f(\vec{x})| \le p(|\vec{x}|)$ for some polynomial p and every \vec{x} , and (ii) $\{(\vec{x}, j) \mid f(\vec{x})_j = 1\} \in \mathcal{P}$.
- d) Suppose $V \in \mathcal{P} = \mathcal{NP}$ Is the following function computable in polynomial time?

$$\mathbb{N} \ni x \mapsto \operatorname{Card} \{ y \in \mathbb{N} \mid y \le x \land (x, y) \in V \} \in \mathbb{N}$$

- e) Prove that every decision problem in NP, as well as the function from (d), can be solved/computed using a polynomial amount of memory (bits).
- f) Prove that an algorithm using at most $s(n) \ge n$ bits of memory on binary inputs of length *n* before terminating, can make at most $2^{O(s(n))}$ steps.

Let $f: X \to Y$ be a function between metric spaces (X,d) and (Y,e). Recall that a modulus of continuity of f is a mapping $\mu: \mathbb{N} \to \mathbb{N}$ satisfying: $d(x,x') \leq 2^{-\mu(n)} \Rightarrow e(f(x), f(x')) \leq 2^{-n}$. Also, f is Hölder-continuous of exponent $\alpha > 0$ if there exists some L such that $e(f(x), f(x')) \leq L \cdot d(x, x')^{\alpha}$ for all $x, x' \in \text{dom}(f)$. Lipschitz-continuous means Hölder-continuous of exponent 1.

PROBLEM 4 (1+1+1+1+1+1+1P):

- a) Prove that every $f \in C^1[0;1]$ (i.e. continuously differentiable $f : [0;1] \to \mathbb{R}$) is Lipschitzcontinuous.
- b) Prove that every Lipschitz-continuous $f : [0; 1] \to \mathbb{R}$ has a modulus of continuity $\mu(m) = m + c$ for some $c \in \mathbb{N}$;
- c) and vice versa: every $f: [0;1] \to \mathbb{R}$ with modulus of continuity $\mu(m) = m + c$ for some $c \in \mathbb{N}$ is Lipschitz-continuous.
- d) Prove that every Hölder-continuous $f: [0,1] \to \mathbb{R}$ has a modulus of continuity $\mu(m) = a \cdot m + c$ for some $a, c \in \mathbb{N}$;
- e) and vice versa.
- f) Prove that $f: [0;1] \ni x \mapsto \sqrt{x} \in [0;1]$ is Hölder-continuous but not Lipschitz.
- g) Sketch/plot the function $g: [0;1] \ni x \mapsto 1/\ln(e/x) \in [0;1]$. Prove that it is continuous with an exponential, but no polynomial, modulus of continuity.
- h) Prove that $g \circ g$ has no exponential, but a doubly exponential, modulus of continuity.