CS700

Fall 2016, Assignment \#3

PROBLEM 3 ($1+1+2+1+1+1 \mathrm{P})$:
Abbreviate $|\vec{x}|:=n$ for $\vec{x} \in\{0,1\}^{n}$ and $\left(x_{1}, \ldots, x_{n}\right)_{j}:=x_{j}$; also consider integers encoded in binary.
a) Prove that the following problem is in $\mathcal{N P}$ for every $V \in \mathcal{P}$:

$$
V^{\prime}:=\{x \in \mathbb{N} \mid \exists y \in \mathbb{N}: y \leq x \wedge(x, y) \in V\}
$$

b) Prove that there exists some $V \in \mathcal{P}$ such that V^{\prime} is $\mathcal{N P}$-hard.
c) Prove that a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable in polynomial time iff it holds (i) $|f(\vec{x})| \leq p(|\vec{x}|)$ for some polynomial p and every \vec{x}, and (ii) $\left\{(\vec{x}, j) \mid f(\vec{x})_{j}=1\right\} \in \mathcal{P}$.
d) Suppose $V \in \mathcal{P}=\mathcal{N P}$ Is the following function computable in polynomial time?

$$
\mathbb{N} \ni x \mapsto \operatorname{Card}\{y \in \mathbb{N} \mid y \leq x \wedge(x, y) \in V\} \in \mathbb{N}
$$

e) Prove that every decision problem in $\mathcal{N P}$, as well as the function from (d), can be solved/computed using a polynomial amount of memory (bits).
f) Prove that an algorithm using at most $s(n) \geq n$ bits of memory on binary inputs of length n before terminating, can make at most $2^{\mathcal{O}(s(n))}$ steps.

Let $f: X \rightarrow Y$ be a function between metric spaces (X, d) and (Y, e). Recall that a modulus of continuity of f is a mapping $\mu: \mathbb{N} \rightarrow \mathbb{N}$ satisfying: $\quad d\left(x, x^{\prime}\right) \leq 2^{-\mu(n)} \Rightarrow e\left(f(x), f\left(x^{\prime}\right)\right) \leq 2^{-n}$. Also, f is Hölder-continuous of exponent $\alpha>0$ if there exists some L such that $e\left(f(x), f\left(x^{\prime}\right)\right) \leq$ $L \cdot d\left(x, x^{\prime}\right)^{\alpha}$ for all $x, x^{\prime} \in \operatorname{dom}(f)$. Lipschitz-continuous means Hölder-continuous of exponent 1 .

PROBLEM $4(1+1+1+1+1+1+1+1 \mathrm{P})$:
a) Prove that every $f \in \mathcal{C}^{1}[0 ; 1]$ (i.e. continuously differentiable $f:[0 ; 1] \rightarrow \mathbb{R}$) is Lipschitzcontinuous.
b) Prove that every Lipschitz-continuous $f:[0 ; 1] \rightarrow \mathbb{R}$ has a modulus of continuity $\mu(m)=m+c$ for some $c \in \mathbb{N}$;
c) and vice versa: every $f:[0 ; 1] \rightarrow \mathbb{R}$ with modulus of continuity $\mu(m)=m+c$ for some $c \in \mathbb{N}$ is Lipschitz-continuous.
d) Prove that every Hölder-continuous $f:[0 ; 1] \rightarrow \mathbb{R}$ has a modulus of continuity $\mu(m)=a \cdot m+c$ for some $a, c \in \mathbb{N}$;
e) and vice versa.
f) Prove that $f:[0 ; 1] \ni x \mapsto \sqrt{x} \in[0 ; 1]$ is Hölder-continuous but not Lipschitz.
g) Sketch/plot the function $g:[0 ; 1] \ni x \mapsto 1 / \ln (e / x) \in[0 ; 1]$.

Prove that it is continuous with an exponential, but no polynomial, modulus of continuity.
h) Prove that $g \circ g$ has no exponential, but a doubly exponential, modulus of continuity.

