CS700

Fall 2016, Assignment #4

PROBLEM 5 (2+1+1+1+2P):

Which of the following are compact metric spaces? Dis-/prove!

- a) $\operatorname{Lip}_{L}([0;1],[0;1]) := \{ f : [0;1] \to [0;1], |f(x) f(x')| \le L \cdot |x x'| \}$ with $d_{\infty}(f,g) := \sup_{x \in [0;1]} |f(x) - g(x)|$
- b) $\operatorname{Lip}_{L}([0;1]) = \{ f : [0;1] \to \mathbb{R}, |f(x) f(x')| \le L \cdot |x x'| \}$ with d_{∞}
- c) $\operatorname{Lip}([0;1],[0;1]) := \bigcup_{L>0} \operatorname{Lip}_L([0;1],[0;1])$ with d_{∞}
- d) $\{f \in \text{Lip}_1([0;1],[0;1]) \text{ continuously differentiable}\}$ with d_{∞}
- e) $\{f \in \operatorname{Lip}_1([0;1],[0;1]) \text{ continuously differentiable}\}$ with $d_{\infty,\infty}(f,g) := d_{\infty}(f,g) + d_{\infty}(f',g')$

Recall that $f: [-1;1] \to \mathbb{R}$ is computable in time $t: \mathbb{N} \to \mathbb{N}$ if some Turing machine can convert any sequence $(a_m) \subseteq \mathbb{Z}$ satisfying $|x - a_m/2^m| \le 2^{-m}$ for some $x \in [-1;1]$ to a sequence $(b_n) \subseteq \mathbb{Z}$ satisfying $|f(x) - b_n/2^n| \le 2^{-n}$ such that b_n appears within t(n) steps.

PROBLEM 6 (1+1+1+2+1+2P):

- a) Prove that $\exp_k : [0;k] \ni x \mapsto e^x$ is computable in time polynomial in $n+k, k \in \mathbb{N}$.
- b) Prove that $\exp_k : [0; 2^k] \ni x \mapsto e^x$ is not computable in time polynomial in n + k.
- c) Prove that $f_k : [0; 2^k] \ni x \mapsto x^2$ is computable in time polynomial in n + k.
- d) Prove that $[1;\infty) \ni x \mapsto 1/x \in (0;1]$ is computable in time polynomial in *n*.
- e) Let $f: [0;1] \to \mathbb{R}$ and $g: [-1;0] \to \mathbb{R}$ be computable in polynomial time with f(0) = g(0). Prove that the joined function $[-1;1] \to \mathbb{R}$ is again computable in polynomial time.
- f) Suppose $f : [0;1] \to \mathbb{R}$ is computable in polynomial time and twice continuously differentiable. Prove that its derivative $f' : [0;1] \to \mathbb{R}$ is again computable in polynomial time.